New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3eqtr4g | Unicode version |
Description: A chained equality inference, useful for converting to definitions. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3eqtr4g.1 | |
3eqtr4g.2 | |
3eqtr4g.3 |
Ref | Expression |
---|---|
3eqtr4g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4g.2 | . . 3 | |
2 | 3eqtr4g.1 | . . 3 | |
3 | 1, 2 | syl5eq 2397 | . 2 |
4 | 3eqtr4g.3 | . 2 | |
5 | 3, 4 | syl6eqr 2403 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wceq 1642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-cleq 2346 |
This theorem is referenced by: rabeqf 2853 csbeq1 3140 csbeq2d 3161 csbnestgf 3185 nineq1 3235 compleq 3244 difeq1 3247 difeq2 3248 symdifeq1 3249 symdifeq2 3250 uneq2 3413 ineq2 3452 dfrab3ss 3534 ifeq1 3667 ifeq2 3668 pweq 3726 sneq 3745 csbsng 3786 rabsn 3791 preq1 3800 preq2 3801 tpeq1 3809 tpeq2 3810 tpeq3 3811 csbunig 3900 unieq 3901 inteq 3930 iineq1 3984 iineq2 3987 dfiin2g 4001 iinrab 4029 iinin1 4038 iununi 4051 opkeq1 4060 opkeq2 4061 pw1eq 4144 cnvkeq 4216 ins2keq 4219 ins3keq 4220 imakeq1 4225 imakeq2 4226 cokeq1 4231 cokeq2 4232 p6eq 4239 sikeq 4242 imagekeq 4245 iotaeq 4348 iotabi 4349 addceq1 4384 addceq2 4385 ncfineq 4474 tfineq 4489 phieq 4571 opeq1 4579 opeq2 4580 proj1eq 4590 proj2eq 4591 opabbid 4625 xpeq1 4799 xpeq2 4800 csbxpg 4814 reseq1 4929 reseq2 4930 imaeq1 4938 imaeq2 4939 rneq 4957 csbrng 4967 csbresg 4977 resima2 5008 dmpropg 5069 cores 5085 cores2 5092 imain 5173 fveq1 5328 fveq2 5329 csbfv12g 5337 fvres 5343 fnsnfv 5374 fnimapr 5375 fvco2 5383 isoini2 5499 oveq 5530 oveq1 5531 oveq2 5532 oprabbid 5564 ovres 5603 mpteq12f 5656 mpt2eq123 5662 mpt2eq123dv 5664 mpt2eq3dva 5670 resmpt 5697 resmpt2 5698 f1od 5727 txpeq1 5780 txpeq2 5781 pprodeq1 5835 pprodeq2 5836 clos1eq1 5875 clos1eq2 5876 eceq1 5963 eceq2 5964 erth 5969 qseq1 5975 qseq2 5976 uniqs 5985 xpassen 6058 nceq 6109 tceq 6159 addcdi 6251 nchoicelem9 6298 freceq12 6312 |
Copyright terms: Public domain | W3C validator |