| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > oplem1 | Unicode version | ||
| Description: A specialized lemma for set theory (ordered pair theorem). (Contributed by NM, 18-Oct-1995.) (Proof shortened by Wolf Lammen, 8-Dec-2012.) |
| Ref | Expression |
|---|---|
| oplem1.1 |
|
| oplem1.2 |
|
| oplem1.3 |
|
| oplem1.4 |
|
| Ref | Expression |
|---|---|
| oplem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oplem1.3 |
. . . . . . 7
| |
| 2 | 1 | notbii 287 |
. . . . . 6
|
| 3 | oplem1.1 |
. . . . . . 7
| |
| 4 | 3 | ord 366 |
. . . . . 6
|
| 5 | 2, 4 | syl5bir 209 |
. . . . 5
|
| 6 | oplem1.2 |
. . . . . 6
| |
| 7 | 6 | ord 366 |
. . . . 5
|
| 8 | 5, 7 | jcad 519 |
. . . 4
|
| 9 | oplem1.4 |
. . . . 5
| |
| 10 | 9 | biimpar 471 |
. . . 4
|
| 11 | 8, 10 | syl6 29 |
. . 3
|
| 12 | 11 | pm2.18d 103 |
. 2
|
| 13 | 12, 1 | sylibr 203 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
| This theorem is referenced by: preqr1 4125 |
| Copyright terms: Public domain | W3C validator |