New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > oplem1 | Unicode version |
Description: A specialized lemma for set theory (ordered pair theorem). (Contributed by NM, 18-Oct-1995.) (Proof shortened by Wolf Lammen, 8-Dec-2012.) |
Ref | Expression |
---|---|
oplem1.1 | |
oplem1.2 | |
oplem1.3 | |
oplem1.4 |
Ref | Expression |
---|---|
oplem1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oplem1.3 | . . . . . . 7 | |
2 | 1 | notbii 287 | . . . . . 6 |
3 | oplem1.1 | . . . . . . 7 | |
4 | 3 | ord 366 | . . . . . 6 |
5 | 2, 4 | syl5bir 209 | . . . . 5 |
6 | oplem1.2 | . . . . . 6 | |
7 | 6 | ord 366 | . . . . 5 |
8 | 5, 7 | jcad 519 | . . . 4 |
9 | oplem1.4 | . . . . 5 | |
10 | 9 | biimpar 471 | . . . 4 |
11 | 8, 10 | syl6 29 | . . 3 |
12 | 11 | pm2.18d 103 | . 2 |
13 | 12, 1 | sylibr 203 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wb 176 wo 357 wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
This theorem is referenced by: preqr1 4125 |
Copyright terms: Public domain | W3C validator |