| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > oplem1 | Unicode version | ||
| Description: A specialized lemma for set theory (ordered pair theorem). (Contributed by NM, 18-Oct-1995.) (Proof shortened by Wolf Lammen, 8-Dec-2012.) | 
| Ref | Expression | 
|---|---|
| oplem1.1 | 
 | 
| oplem1.2 | 
 | 
| oplem1.3 | 
 | 
| oplem1.4 | 
 | 
| Ref | Expression | 
|---|---|
| oplem1 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | oplem1.3 | 
. . . . . . 7
 | |
| 2 | 1 | notbii 287 | 
. . . . . 6
 | 
| 3 | oplem1.1 | 
. . . . . . 7
 | |
| 4 | 3 | ord 366 | 
. . . . . 6
 | 
| 5 | 2, 4 | syl5bir 209 | 
. . . . 5
 | 
| 6 | oplem1.2 | 
. . . . . 6
 | |
| 7 | 6 | ord 366 | 
. . . . 5
 | 
| 8 | 5, 7 | jcad 519 | 
. . . 4
 | 
| 9 | oplem1.4 | 
. . . . 5
 | |
| 10 | 9 | biimpar 471 | 
. . . 4
 | 
| 11 | 8, 10 | syl6 29 | 
. . 3
 | 
| 12 | 11 | pm2.18d 103 | 
. 2
 | 
| 13 | 12, 1 | sylibr 203 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 | 
| This theorem is referenced by: preqr1 4125 | 
| Copyright terms: Public domain | W3C validator |