New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > oplem1 | GIF version |
Description: A specialized lemma for set theory (ordered pair theorem). (Contributed by NM, 18-Oct-1995.) (Proof shortened by Wolf Lammen, 8-Dec-2012.) |
Ref | Expression |
---|---|
oplem1.1 | ⊢ (φ → (ψ ∨ χ)) |
oplem1.2 | ⊢ (φ → (θ ∨ τ)) |
oplem1.3 | ⊢ (ψ ↔ θ) |
oplem1.4 | ⊢ (χ → (θ ↔ τ)) |
Ref | Expression |
---|---|
oplem1 | ⊢ (φ → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oplem1.3 | . . . . . . 7 ⊢ (ψ ↔ θ) | |
2 | 1 | notbii 287 | . . . . . 6 ⊢ (¬ ψ ↔ ¬ θ) |
3 | oplem1.1 | . . . . . . 7 ⊢ (φ → (ψ ∨ χ)) | |
4 | 3 | ord 366 | . . . . . 6 ⊢ (φ → (¬ ψ → χ)) |
5 | 2, 4 | syl5bir 209 | . . . . 5 ⊢ (φ → (¬ θ → χ)) |
6 | oplem1.2 | . . . . . 6 ⊢ (φ → (θ ∨ τ)) | |
7 | 6 | ord 366 | . . . . 5 ⊢ (φ → (¬ θ → τ)) |
8 | 5, 7 | jcad 519 | . . . 4 ⊢ (φ → (¬ θ → (χ ∧ τ))) |
9 | oplem1.4 | . . . . 5 ⊢ (χ → (θ ↔ τ)) | |
10 | 9 | biimpar 471 | . . . 4 ⊢ ((χ ∧ τ) → θ) |
11 | 8, 10 | syl6 29 | . . 3 ⊢ (φ → (¬ θ → θ)) |
12 | 11 | pm2.18d 103 | . 2 ⊢ (φ → θ) |
13 | 12, 1 | sylibr 203 | 1 ⊢ (φ → ψ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∨ wo 357 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
This theorem is referenced by: preqr1 4125 |
Copyright terms: Public domain | W3C validator |