NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  syl5bir Unicode version

Theorem syl5bir 209
Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
syl5bir.1
syl5bir.2
Assertion
Ref Expression
syl5bir

Proof of Theorem syl5bir
StepHypRef Expression
1 syl5bir.1 . . 3
21biimpri 197 . 2
3 syl5bir.2 . 2
42, 3syl5 28 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  3imtr3g  260  oplem1  930  nic-ax  1438  19.30  1604  19.33b  1608  ax10  1944  necon4bd  2579  ceqex  2970  ssdisj  3601  pssdifn0  3612  ltfintr  4460  evenodddisj  4517  sfinltfin  4536  fun11iun  5306  funopfv  5358  dff3  5421  funfvima  5460  trrd  5926  peano4nc  6151  ncspw1eu  6160  fce  6189
  Copyright terms: Public domain W3C validator