New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sylibr | Unicode version |
Description: A mixed syllogism inference from an implication and a biconditional. Useful for substituting a consequent with a definition. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sylibr.1 | |
sylibr.2 |
Ref | Expression |
---|---|
sylibr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylibr.1 | . 2 | |
2 | sylibr.2 | . . 3 | |
3 | 2 | biimpri 197 | . 2 |
4 | 1, 3 | syl 15 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: pm5.74rd 239 bitri 240 3imtr4i 257 con2bid 319 sylanbrc 645 oplem1 930 3mix1 1124 3mix2 1125 3jca 1132 syl3anbrc 1136 inegd 1333 cad11 1399 had1 1402 nfxfrd 1571 19.29r 1597 nfdv 1639 19.39 1661 19.24 1662 19.34 1663 19.8wOLD 1693 19.8a 1756 nfd 1766 hbim1 1810 nfim1OLD 1812 spimehOLD 1821 nfan1 1881 ax12olem2 1928 spime 1976 sbn 2062 spsbe 2075 ax11eq 2193 ax11el 2194 mo 2226 eu2 2229 exmo 2249 2exeu 2281 2mo 2282 2eu6 2289 bm1.1 2338 eqrdv 2351 3eltr4g 2436 abbi2dv 2468 abbi1dv 2469 nfcd 2484 nfcxfrd 2487 3netr4g 2545 necon3ai 2556 alral 2672 rspe 2675 rsp2e 2677 rgen2a 2680 ralrimi 2695 r19.27av 2752 mormo 2823 nrexrmo 2828 cgsex2g 2891 cgsex4g 2892 spc2egv 2941 spc3egv 2943 rspce 2950 ceqex 2969 mo2icl 3015 reu3 3026 reu6i 3027 sbc5 3070 rspesbca 3126 rmo2i 3132 sbnfc2 3196 ssrdv 3278 3sstr4g 3312 syl5eqss 3315 ss2abdv 3339 abssdv 3340 rabssdv 3346 ss2rabdv 3347 ssun1 3426 unssad 3440 unssbd 3441 uneqin 3506 reuss2 3535 ne0i 3556 reximdva0 3561 minel 3606 uneqdifeq 3638 disjsn2 3787 absneu 3794 rabsneu 3795 unsneqsn 3887 elunii 3896 dfnfc2 3909 uniss2 3922 unidif 3923 ssunieq 3924 intab 3956 iunss2 4011 iunxdif2 4014 riinrab 4041 snelpwi 4116 pwadjoin 4119 pw1disj 4167 eqrelkrdv 4214 setswith 4321 sniota 4369 eladdci 4399 findsd 4410 elsuci 4414 nnsucelr 4428 snfi 4431 ssfin 4470 eventfin 4517 oddtfin 4518 nnadjoinpw 4521 sfindbl 4530 sfinltfin 4535 vfinspnn 4541 1cvsfin 4542 vfinncvntnn 4548 vfinspclt 4552 vfinncsp 4554 vinf 4555 phi11lem1 4595 copsex2t 4608 phidisjnn 4615 3brtr4g 4671 relssdv 4849 eqrelrdv 4852 eqoprrdv 4854 opeldm 4910 imasn 5018 dminss 5041 funeu 5131 funco 5142 funun 5146 funprg 5149 funprgOLD 5150 fununi 5160 funcnvuni 5161 fnunsn 5190 fn0 5202 fnimadisj 5203 funssxp 5233 fssres 5238 feu 5242 fimacnvdisj 5244 f00 5249 f1co 5264 fores 5278 foconst 5280 foimacnv 5303 f1oun 5304 fun11iun 5305 fo00 5318 fv3 5341 nfunsn 5353 funfvbrb 5401 fvimacnv 5403 respreima 5410 fvelrn 5413 dff2 5419 dff3 5420 dffo4 5423 ffvresb 5431 fsn 5432 fpr 5437 funfvima3 5461 fvclss 5462 dff1o6 5475 isores1 5494 isoini2 5498 fununiq 5517 funsi 5520 fnoprabg 5585 ovg 5601 ndmovass 5618 ndmovdistr 5619 dmmptg 5684 trtxp 5781 fntxp 5804 qrpprod 5836 fnpprod 5843 f1opprod 5844 clos1conn 5879 clos1basesuc 5882 clos1nrel 5886 frds 5935 erth 5968 qsss 5986 ecelqsdm 5994 mapsspm 6021 mapsspw 6022 map0b 6024 mapsn 6026 f1oeng 6032 fundmen 6043 enpw1 6062 enmap2lem4 6066 enmap2 6068 enmap1lem4 6072 enprmaplem3 6078 ncelncs 6120 ncidg 6122 ncprc 6124 ncdisjun 6136 ncspw1eu 6159 nntccl 6170 fnce 6176 fce 6188 nclec 6195 lec0cg 6198 ltcpw1pwg 6202 sbthlem3 6205 dflec3 6221 nclenc 6222 lenc 6223 taddc 6229 nmembers1lem3 6270 spacis 6288 nchoicelem7 6295 nchoicelem9 6297 nchoicelem13 6301 nchoicelem14 6302 nchoicelem17 6305 fnfrec 6320 frecsuc 6322 |
Copyright terms: Public domain | W3C validator |