New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sylibr | Unicode version |
Description: A mixed syllogism inference from an implication and a biconditional. Useful for substituting a consequent with a definition. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sylibr.1 | |
sylibr.2 |
Ref | Expression |
---|---|
sylibr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylibr.1 | . 2 | |
2 | sylibr.2 | . . 3 | |
3 | 2 | biimpri 197 | . 2 |
4 | 1, 3 | syl 15 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: pm5.74rd 239 bitri 240 3imtr4i 257 con2bid 319 sylanbrc 645 oplem1 930 3mix1 1124 3mix2 1125 3jca 1132 syl3anbrc 1136 inegd 1333 cad11 1399 had1 1402 nfxfrd 1571 19.29r 1597 nfdv 1639 19.39 1661 19.24 1662 19.34 1663 19.8wOLD 1693 19.8a 1756 nfd 1766 hbim1 1810 nfim1OLD 1812 spimehOLD 1821 nfan1 1881 ax12olem2 1928 spime 1976 sbn 2062 spsbe 2075 ax11eq 2193 ax11el 2194 mo 2226 eu2 2229 exmo 2249 2exeu 2281 2mo 2282 2eu6 2289 bm1.1 2338 eqrdv 2351 3eltr4g 2436 abbi2dv 2469 abbi1dv 2470 nfcd 2485 nfcxfrd 2488 3netr4g 2546 necon3ai 2557 alral 2673 rspe 2676 rsp2e 2678 rgen2a 2681 ralrimi 2696 r19.27av 2753 mormo 2824 nrexrmo 2829 cgsex2g 2892 cgsex4g 2893 spc2egv 2942 spc3egv 2944 rspce 2951 ceqex 2970 mo2icl 3016 reu3 3027 reu6i 3028 sbc5 3071 rspesbca 3127 rmo2i 3133 sbnfc2 3197 ssrdv 3279 3sstr4g 3313 syl5eqss 3316 ss2abdv 3340 abssdv 3341 rabssdv 3347 ss2rabdv 3348 ssun1 3427 unssad 3441 unssbd 3442 uneqin 3507 reuss2 3536 ne0i 3557 reximdva0 3562 minel 3607 uneqdifeq 3639 disjsn2 3788 absneu 3795 rabsneu 3796 unsneqsn 3888 elunii 3897 dfnfc2 3910 uniss2 3923 unidif 3924 ssunieq 3925 intab 3957 iunss2 4012 iunxdif2 4015 riinrab 4042 snelpwi 4117 pwadjoin 4120 pw1disj 4168 eqrelkrdv 4215 setswith 4322 sniota 4370 eladdci 4400 findsd 4411 elsuci 4415 nnsucelr 4429 snfi 4432 ssfin 4471 eventfin 4518 oddtfin 4519 nnadjoinpw 4522 sfindbl 4531 sfinltfin 4536 vfinspnn 4542 1cvsfin 4543 vfinncvntnn 4549 vfinspclt 4553 vfinncsp 4555 vinf 4556 phi11lem1 4596 copsex2t 4609 phidisjnn 4616 3brtr4g 4672 relssdv 4850 eqrelrdv 4853 eqoprrdv 4855 opeldm 4911 imasn 5019 dminss 5042 funeu 5132 funco 5143 funun 5147 funprg 5150 funprgOLD 5151 fununi 5161 funcnvuni 5162 fnunsn 5191 fn0 5203 fnimadisj 5204 funssxp 5234 fssres 5239 feu 5243 fimacnvdisj 5245 f00 5250 f1co 5265 fores 5279 foconst 5281 foimacnv 5304 f1oun 5305 fun11iun 5306 fo00 5319 fv3 5342 nfunsn 5354 funfvbrb 5402 fvimacnv 5404 respreima 5411 fvelrn 5414 dff2 5420 dff3 5421 dffo4 5424 ffvresb 5432 fsn 5433 fpr 5438 funfvima3 5462 fvclss 5463 dff1o6 5476 isores1 5495 isoini2 5499 fununiq 5518 funsi 5521 fnoprabg 5586 ovg 5602 ndmovass 5619 ndmovdistr 5620 dmmptg 5685 trtxp 5782 fntxp 5805 qrpprod 5837 fnpprod 5844 f1opprod 5845 clos1conn 5880 clos1basesuc 5883 clos1nrel 5887 frds 5936 erth 5969 qsss 5987 ecelqsdm 5995 mapsspm 6022 mapsspw 6023 map0b 6025 mapsn 6027 f1oeng 6033 fundmen 6044 enpw1 6063 enmap2lem4 6067 enmap2 6069 enmap1lem4 6073 enprmaplem3 6079 ncelncs 6121 ncidg 6123 ncprc 6125 ncdisjun 6137 ncspw1eu 6160 nntccl 6171 fnce 6177 fce 6189 nclec 6196 lec0cg 6199 ltcpw1pwg 6203 sbthlem3 6206 dflec3 6222 nclenc 6223 lenc 6224 taddc 6230 nmembers1lem3 6271 spacis 6289 nchoicelem7 6296 nchoicelem9 6298 nchoicelem13 6302 nchoicelem14 6303 nchoicelem17 6306 fnfrec 6321 frecsuc 6323 |
Copyright terms: Public domain | W3C validator |