NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rabeqbidva Unicode version

Theorem rabeqbidva 2855
Description: Equality of restricted class abstractions. (Contributed by Mario Carneiro, 26-Jan-2017.)
Hypotheses
Ref Expression
rabeqbidva.1
rabeqbidva.2
Assertion
Ref Expression
rabeqbidva
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem rabeqbidva
StepHypRef Expression
1 rabeqbidva.2 . . 3
21rabbidva 2850 . 2
3 rabeqbidva.1 . . 3
4 rabeq 2853 . . 3
53, 4syl 15 . 2
62, 5eqtrd 2385 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wa 358   wceq 1642   wcel 1710  crab 2618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ral 2619  df-rab 2623
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator