New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rabeqbidva | GIF version |
Description: Equality of restricted class abstractions. (Contributed by Mario Carneiro, 26-Jan-2017.) |
Ref | Expression |
---|---|
rabeqbidva.1 | ⊢ (φ → A = B) |
rabeqbidva.2 | ⊢ ((φ ∧ x ∈ A) → (ψ ↔ χ)) |
Ref | Expression |
---|---|
rabeqbidva | ⊢ (φ → {x ∈ A ∣ ψ} = {x ∈ B ∣ χ}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqbidva.2 | . . 3 ⊢ ((φ ∧ x ∈ A) → (ψ ↔ χ)) | |
2 | 1 | rabbidva 2851 | . 2 ⊢ (φ → {x ∈ A ∣ ψ} = {x ∈ A ∣ χ}) |
3 | rabeqbidva.1 | . . 3 ⊢ (φ → A = B) | |
4 | rabeq 2854 | . . 3 ⊢ (A = B → {x ∈ A ∣ χ} = {x ∈ B ∣ χ}) | |
5 | 3, 4 | syl 15 | . 2 ⊢ (φ → {x ∈ A ∣ χ} = {x ∈ B ∣ χ}) |
6 | 2, 5 | eqtrd 2385 | 1 ⊢ (φ → {x ∈ A ∣ ψ} = {x ∈ B ∣ χ}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 {crab 2619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rab 2624 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |