NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rabss Unicode version

Theorem rabss 3344
Description: Restricted class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006.)
Assertion
Ref Expression
rabss
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem rabss
StepHypRef Expression
1 df-rab 2624 . . 3
21sseq1i 3296 . 2
3 abss 3336 . 2
4 impexp 433 . . . 4
54albii 1566 . . 3
6 df-ral 2620 . . 3
75, 6bitr4i 243 . 2
82, 3, 73bitri 262 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wa 358  wal 1540   wcel 1710  cab 2339  wral 2615  crab 2619   wss 3258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-rab 2624  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260
This theorem is referenced by:  rabssdv  3347
  Copyright terms: Public domain W3C validator