NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ssrab Unicode version

Theorem ssrab 3345
Description: Subclass of a restricted class abstraction. (Contributed by NM, 16-Aug-2006.)
Assertion
Ref Expression
ssrab
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem ssrab
StepHypRef Expression
1 df-rab 2624 . . 3
21sseq2i 3297 . 2
3 ssab 3337 . 2
4 dfss3 3264 . . . 4
54anbi1i 676 . . 3
6 r19.26 2747 . . 3
7 df-ral 2620 . . 3
85, 6, 73bitr2ri 265 . 2
92, 3, 83bitri 262 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wa 358  wal 1540   wcel 1710  cab 2339  wral 2615  crab 2619   wss 3258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-rab 2624  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260
This theorem is referenced by:  ssrabdv  3346
  Copyright terms: Public domain W3C validator