NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  raltp Unicode version

Theorem raltp 3782
Description: Convert a quantification over a triple to a conjunction. (Contributed by NM, 13-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
raltp.1
raltp.2
raltp.3
raltp.4
raltp.5
raltp.6
Assertion
Ref Expression
raltp
Distinct variable groups:   ,   ,   ,   ,   ,   ,
Allowed substitution hint:   ()

Proof of Theorem raltp
StepHypRef Expression
1 raltp.1 . 2
2 raltp.2 . 2
3 raltp.3 . 2
4 raltp.4 . . 3
5 raltp.5 . . 3
6 raltp.6 . . 3
74, 5, 6raltpg 3778 . 2
81, 2, 3, 7mp3an 1277 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   w3a 934   wceq 1642   wcel 1710  wral 2615  cvv 2860  ctp 3740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-un 3215  df-sn 3742  df-pr 3743  df-tp 3744
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator