NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  raltpg Unicode version

Theorem raltpg 3778
Description: Convert a quantification over a triple to a conjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ralprg.1
ralprg.2
raltpg.3
Assertion
Ref Expression
raltpg
Distinct variable groups:   ,   ,   ,   ,   ,   ,
Allowed substitution hints:   ()   ()   ()   ()

Proof of Theorem raltpg
StepHypRef Expression
1 ralprg.1 . . . . 5
2 ralprg.2 . . . . 5
31, 2ralprg 3776 . . . 4
4 raltpg.3 . . . . 5
54ralsng 3766 . . . 4
63, 5bi2anan9 843 . . 3
763impa 1146 . 2
8 df-tp 3744 . . . 4
98raleqi 2812 . . 3
10 ralunb 3445 . . 3
119, 10bitri 240 . 2
12 df-3an 936 . 2
137, 11, 123bitr4g 279 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wa 358   w3a 934   wceq 1642   wcel 1710  wral 2615   cun 3208  csn 3738  cpr 3739  ctp 3740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-un 3215  df-sn 3742  df-pr 3743  df-tp 3744
This theorem is referenced by:  raltp  3782
  Copyright terms: Public domain W3C validator