| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > resundi | Unicode version | ||
| Description: Distributive law for restriction over union. Theorem 31 of [Suppes] p. 65. (Contributed by set.mm contributors, 30-Sep-2002.) | 
| Ref | Expression | 
|---|---|
| resundi | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xpundir 4834 | 
. . . 4
 | |
| 2 | 1 | ineq2i 3455 | 
. . 3
 | 
| 3 | indi 3502 | 
. . 3
 | |
| 4 | 2, 3 | eqtri 2373 | 
. 2
 | 
| 5 | df-res 4789 | 
. 2
 | |
| 6 | df-res 4789 | 
. . 3
 | |
| 7 | df-res 4789 | 
. . 3
 | |
| 8 | 6, 7 | uneq12i 3417 | 
. 2
 | 
| 9 | 4, 5, 8 | 3eqtr4i 2383 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-opab 4624 df-xp 4785 df-res 4789 | 
| This theorem is referenced by: imaundi 5040 | 
| Copyright terms: Public domain | W3C validator |