New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > resundi | Unicode version |
Description: Distributive law for restriction over union. Theorem 31 of [Suppes] p. 65. (Contributed by set.mm contributors, 30-Sep-2002.) |
Ref | Expression |
---|---|
resundi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpundir 4834 | . . . 4 | |
2 | 1 | ineq2i 3455 | . . 3 |
3 | indi 3502 | . . 3 | |
4 | 2, 3 | eqtri 2373 | . 2 |
5 | df-res 4789 | . 2 | |
6 | df-res 4789 | . . 3 | |
7 | df-res 4789 | . . 3 | |
8 | 6, 7 | uneq12i 3417 | . 2 |
9 | 4, 5, 8 | 3eqtr4i 2383 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wceq 1642 cvv 2860 cun 3208 cin 3209 cxp 4771 cres 4775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-opab 4624 df-xp 4785 df-res 4789 |
This theorem is referenced by: imaundi 5040 |
Copyright terms: Public domain | W3C validator |