![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > resundi | GIF version |
Description: Distributive law for restriction over union. Theorem 31 of [Suppes] p. 65. (Contributed by set.mm contributors, 30-Sep-2002.) |
Ref | Expression |
---|---|
resundi | ⊢ (A ↾ (B ∪ C)) = ((A ↾ B) ∪ (A ↾ C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpundir 4833 | . . . 4 ⊢ ((B ∪ C) × V) = ((B × V) ∪ (C × V)) | |
2 | 1 | ineq2i 3454 | . . 3 ⊢ (A ∩ ((B ∪ C) × V)) = (A ∩ ((B × V) ∪ (C × V))) |
3 | indi 3501 | . . 3 ⊢ (A ∩ ((B × V) ∪ (C × V))) = ((A ∩ (B × V)) ∪ (A ∩ (C × V))) | |
4 | 2, 3 | eqtri 2373 | . 2 ⊢ (A ∩ ((B ∪ C) × V)) = ((A ∩ (B × V)) ∪ (A ∩ (C × V))) |
5 | df-res 4788 | . 2 ⊢ (A ↾ (B ∪ C)) = (A ∩ ((B ∪ C) × V)) | |
6 | df-res 4788 | . . 3 ⊢ (A ↾ B) = (A ∩ (B × V)) | |
7 | df-res 4788 | . . 3 ⊢ (A ↾ C) = (A ∩ (C × V)) | |
8 | 6, 7 | uneq12i 3416 | . 2 ⊢ ((A ↾ B) ∪ (A ↾ C)) = ((A ∩ (B × V)) ∪ (A ∩ (C × V))) |
9 | 4, 5, 8 | 3eqtr4i 2383 | 1 ⊢ (A ↾ (B ∪ C)) = ((A ↾ B) ∪ (A ↾ C)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 Vcvv 2859 ∪ cun 3207 ∩ cin 3208 × cxp 4770 ↾ cres 4774 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-opab 4623 df-xp 4784 df-res 4788 |
This theorem is referenced by: imaundi 5039 |
Copyright terms: Public domain | W3C validator |