| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > rexbiia | Unicode version | ||
| Description: Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 26-Oct-1999.) | 
| Ref | Expression | 
|---|---|
| ralbiia.1 | 
 | 
| Ref | Expression | 
|---|---|
| rexbiia | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ralbiia.1 | 
. . 3
 | |
| 2 | 1 | pm5.32i 618 | 
. 2
 | 
| 3 | 2 | rexbii2 2644 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 | 
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-rex 2621 | 
| This theorem is referenced by: 2rexbiia 2649 ceqsrexbv 2974 reu8 3033 phialllem1 4617 finnc 6244 nchoicelem11 6300 nchoicelem16 6305 | 
| Copyright terms: Public domain | W3C validator |