New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rexbiia | GIF version |
Description: Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 26-Oct-1999.) |
Ref | Expression |
---|---|
ralbiia.1 | ⊢ (x ∈ A → (φ ↔ ψ)) |
Ref | Expression |
---|---|
rexbiia | ⊢ (∃x ∈ A φ ↔ ∃x ∈ A ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbiia.1 | . . 3 ⊢ (x ∈ A → (φ ↔ ψ)) | |
2 | 1 | pm5.32i 618 | . 2 ⊢ ((x ∈ A ∧ φ) ↔ (x ∈ A ∧ ψ)) |
3 | 2 | rexbii2 2644 | 1 ⊢ (∃x ∈ A φ ↔ ∃x ∈ A ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∈ wcel 1710 ∃wrex 2616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-rex 2621 |
This theorem is referenced by: 2rexbiia 2649 ceqsrexbv 2974 reu8 3033 phialllem1 4617 finnc 6244 nchoicelem11 6300 nchoicelem16 6305 |
Copyright terms: Public domain | W3C validator |