New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  rexeqbidva Unicode version

Theorem rexeqbidva 2822
 Description: Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017.)
Hypotheses
Ref Expression
raleqbidva.1
raleqbidva.2
Assertion
Ref Expression
rexeqbidva
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem rexeqbidva
StepHypRef Expression
1 raleqbidva.2 . . 3
21rexbidva 2631 . 2
3 raleqbidva.1 . . 3
43rexeqdv 2814 . 2
52, 4bitrd 244 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 176   wa 358   wceq 1642   wcel 1710  wrex 2615 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-cleq 2346  df-clel 2349  df-nfc 2478  df-rex 2620 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator