NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rexbidva Unicode version

Theorem rexbidva 2632
Description: Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 9-Mar-1997.)
Hypothesis
Ref Expression
ralbidva.1
Assertion
Ref Expression
rexbidva
Distinct variable group:   ,
Allowed substitution hints:   ()   ()   ()

Proof of Theorem rexbidva
StepHypRef Expression
1 nfv 1619 . 2  F/
2 ralbidva.1 . 2
31, 2rexbida 2630 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wa 358   wcel 1710  wrex 2616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-nf 1545  df-rex 2621
This theorem is referenced by:  2rexbiia  2649  2rexbidva  2656  rexeqbidva  2823  phidisjnn  4616  phialllem1  4617  dfimafn  5367  funimass4  5369  fconstfv  5457  isomin  5497  f1oiso  5500
  Copyright terms: Public domain W3C validator