| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > rexbidva | Unicode version | ||
| Description: Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 9-Mar-1997.) |
| Ref | Expression |
|---|---|
| ralbidva.1 |
|
| Ref | Expression |
|---|---|
| rexbidva |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1619 |
. 2
| |
| 2 | ralbidva.1 |
. 2
| |
| 3 | 1, 2 | rexbida 2630 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-rex 2621 |
| This theorem is referenced by: 2rexbiia 2649 2rexbidva 2656 rexeqbidva 2823 phidisjnn 4616 phialllem1 4617 dfimafn 5367 funimass4 5369 fconstfv 5457 isomin 5497 f1oiso 5500 |
| Copyright terms: Public domain | W3C validator |