NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rexrab2 Unicode version

Theorem rexrab2 3005
Description: Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ralab2.1
Assertion
Ref Expression
rexrab2
Distinct variable groups:   ,   ,   ,   ,   ,
Allowed substitution hints:   ()   ()   ()   ()

Proof of Theorem rexrab2
StepHypRef Expression
1 df-rab 2624 . . 3
21rexeqi 2813 . 2
3 ralab2.1 . . 3
43rexab2 3004 . 2
5 anass 630 . . . 4
65exbii 1582 . . 3
7 df-rex 2621 . . 3
86, 7bitr4i 243 . 2
92, 4, 83bitri 262 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wa 358  wex 1541   wcel 1710  cab 2339  wrex 2616  crab 2619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rex 2621  df-rab 2624
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator