NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rexrab2 GIF version

Theorem rexrab2 3005
Description: Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ralab2.1 (x = y → (ψχ))
Assertion
Ref Expression
rexrab2 (x {y A φ}ψy A (φ χ))
Distinct variable groups:   x,y   x,A   χ,x   φ,x   ψ,y
Allowed substitution hints:   φ(y)   ψ(x)   χ(y)   A(y)

Proof of Theorem rexrab2
StepHypRef Expression
1 df-rab 2624 . . 3 {y A φ} = {y (y A φ)}
21rexeqi 2813 . 2 (x {y A φ}ψx {y (y A φ)}ψ)
3 ralab2.1 . . 3 (x = y → (ψχ))
43rexab2 3004 . 2 (x {y (y A φ)}ψy((y A φ) χ))
5 anass 630 . . . 4 (((y A φ) χ) ↔ (y A (φ χ)))
65exbii 1582 . . 3 (y((y A φ) χ) ↔ y(y A (φ χ)))
7 df-rex 2621 . . 3 (y A (φ χ) ↔ y(y A (φ χ)))
86, 7bitr4i 243 . 2 (y((y A φ) χ) ↔ y A (φ χ))
92, 4, 83bitri 262 1 (x {y A φ}ψy A (φ χ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358  wex 1541   wcel 1710  {cab 2339  wrex 2616  {crab 2619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rex 2621  df-rab 2624
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator