New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > anass | Unicode version |
Description: Associative law for conjunction. Theorem *4.32 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
anass |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 | |
2 | 1 | anassrs 629 | . 2 |
3 | id 19 | . . 3 | |
4 | 3 | anasss 628 | . 2 |
5 | 2, 4 | impbii 180 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wb 176 wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: an12 772 an32 773 an13 774 an31 775 an4 797 3anass 938 4exdistr 1911 2sb5 2112 2sb5rf 2117 sbel2x 2125 r2exf 2651 r19.41 2764 ceqsex3v 2898 ceqsrex2v 2975 rexrab 3001 rexrab2 3005 2reu5 3045 rexss 3334 inass 3466 indifdir 3512 difin2 3517 difrab 3530 reupick3 3541 inssdif0 3618 rexdifsn 3844 opkelopkabg 4246 otkelins2kg 4254 otkelins3kg 4255 opkelcokg 4262 opkelimagekg 4272 dfnnc2 4396 addcass 4416 copsexg 4608 setconslem1 4732 setconslem6 4737 rabxp 4815 brres 4950 resopab2 5002 ssrnres 5060 cnvresima 5078 coass 5098 elxp4 5109 fncnv 5159 imadif 5172 dff1o2 5292 eqfnfv3 5395 isoini 5498 f1oiso 5500 oprabid 5551 resoprab2 5583 fnov 5592 ov3 5600 mpt2eq123 5662 mptpreima 5683 mpt2mptx 5709 restxp 5787 brimage 5794 txpcofun 5804 addcfnex 5825 brpprod 5840 clos1induct 5881 frds 5936 lecex 6116 ceexlem1 6174 tcfnex 6245 nmembers1lem3 6271 nncdiv3lem1 6276 nchoicelem11 6300 nchoicelem16 6305 |
Copyright terms: Public domain | W3C validator |