NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rexsng Unicode version

Theorem rexsng 3767
Description: Restricted existential quantification over a singleton. (Contributed by NM, 29-Jan-2012.)
Hypothesis
Ref Expression
ralsng.1
Assertion
Ref Expression
rexsng
Distinct variable groups:   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem rexsng
StepHypRef Expression
1 rexsns 3765 . 2  [.  ].
2 ralsng.1 . . 3
32sbcieg 3079 . 2  [.  ].
41, 3bitrd 244 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wceq 1642   wcel 1710  wrex 2616   [.wsbc 3047  csn 3738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rex 2621  df-v 2862  df-sbc 3048  df-sn 3742
This theorem is referenced by:  rexsn  3769  rexprg  3777  rextpg  3779  iunxsng  4045  imasn  5019
  Copyright terms: Public domain W3C validator