New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rexsn | Unicode version |
Description: Restricted existential quantification over a singleton. (Contributed by Jeff Madsen, 5-Jan-2011.) |
Ref | Expression |
---|---|
ralsn.1 | |
ralsn.2 |
Ref | Expression |
---|---|
rexsn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralsn.1 | . 2 | |
2 | ralsn.2 | . . 3 | |
3 | 2 | rexsng 3767 | . 2 |
4 | 1, 3 | ax-mp 5 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wceq 1642 wcel 1710 wrex 2616 cvv 2860 csn 3738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-v 2862 df-sbc 3048 df-sn 3742 |
This theorem is referenced by: pw1sn 4166 elimaksn 4284 setswith 4322 addcid1 4406 ltfintrilem1 4466 nnadjoin 4521 tfinnn 4535 elsnres 4997 xpnedisj 5514 snec 5988 lec0cg 6199 addccan2nclem1 6264 |
Copyright terms: Public domain | W3C validator |