| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > rspsbc | Unicode version | ||
| Description: Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. This provides an axiom for a predicate calculus for a restricted domain. This theorem generalizes the unrestricted stdpc4 2024 and spsbc 3059. See also rspsbca 3126 and rspcsbela 3196. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) | 
| Ref | Expression | 
|---|---|
| rspsbc | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cbvralsv 2847 | 
. 2
 | |
| 2 | dfsbcq2 3050 | 
. . 3
 | |
| 3 | 2 | rspcv 2952 | 
. 2
 | 
| 4 | 1, 3 | syl5bi 208 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-v 2862 df-sbc 3048 | 
| This theorem is referenced by: rspsbca 3126 sbcth2 3130 rspcsbela 3196 | 
| Copyright terms: Public domain | W3C validator |