NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rspsbc Unicode version

Theorem rspsbc 3125
Description: Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. This provides an axiom for a predicate calculus for a restricted domain. This theorem generalizes the unrestricted stdpc4 2024 and spsbc 3059. See also rspsbca 3126 and rspcsbela 3196. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
Assertion
Ref Expression
rspsbc  [.  ].
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem rspsbc
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 cbvralsv 2847 . 2
2 dfsbcq2 3050 . . 3  [.  ].
32rspcv 2952 . 2  [.  ].
41, 3syl5bi 208 1  [.  ].
Colors of variables: wff setvar class
Syntax hints:   wi 4  wsb 1648   wcel 1710  wral 2615   [.wsbc 3047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-v 2862  df-sbc 3048
This theorem is referenced by:  rspsbca  3126  sbcth2  3130  rspcsbela  3196
  Copyright terms: Public domain W3C validator