| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > spsbc | Unicode version | ||
| Description: Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 2024 and rspsbc 3125. (Contributed by NM, 16-Jan-2004.) | 
| Ref | Expression | 
|---|---|
| spsbc | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | stdpc4 2024 | 
. . . 4
 | |
| 2 | sbsbc 3051 | 
. . . 4
 | |
| 3 | 1, 2 | sylib 188 | 
. . 3
 | 
| 4 | dfsbcq 3049 | 
. . 3
 | |
| 5 | 3, 4 | syl5ib 210 | 
. 2
 | 
| 6 | 5 | vtocleg 2926 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-v 2862 df-sbc 3048 | 
| This theorem is referenced by: spsbcd 3060 sbcth 3061 sbcthdv 3062 sbceqal 3098 sbcimdv 3108 csbexg 3147 csbiebt 3173 | 
| Copyright terms: Public domain | W3C validator |