New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > spsbc | Unicode version |
Description: Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 2024 and rspsbc 3125. (Contributed by NM, 16-Jan-2004.) |
Ref | Expression |
---|---|
spsbc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stdpc4 2024 | . . . 4 | |
2 | sbsbc 3051 | . . . 4 | |
3 | 1, 2 | sylib 188 | . . 3 |
4 | dfsbcq 3049 | . . 3 | |
5 | 3, 4 | syl5ib 210 | . 2 |
6 | 5 | vtocleg 2926 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wal 1540 wceq 1642 wsb 1648 wcel 1710 wsbc 3047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-v 2862 df-sbc 3048 |
This theorem is referenced by: spsbcd 3060 sbcth 3061 sbcthdv 3062 sbceqal 3098 sbcimdv 3108 csbexg 3147 csbiebt 3173 |
Copyright terms: Public domain | W3C validator |