| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > sbbid | Unicode version | ||
| Description: Deduction substituting both sides of a biconditional. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| sbbid.1 | 
 | 
| sbbid.2 | 
 | 
| Ref | Expression | 
|---|---|
| sbbid | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbbid.1 | 
. . 3
 | |
| 2 | sbbid.2 | 
. . 3
 | |
| 3 | 1, 2 | alrimi 1765 | 
. 2
 | 
| 4 | spsbbi 2077 | 
. 2
 | |
| 5 | 3, 4 | syl 15 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 | 
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 | 
| This theorem is referenced by: sbcom 2089 sbcom2 2114 | 
| Copyright terms: Public domain | W3C validator |