New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbbid | GIF version |
Description: Deduction substituting both sides of a biconditional. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sbbid.1 | ⊢ Ⅎxφ |
sbbid.2 | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
sbbid | ⊢ (φ → ([y / x]ψ ↔ [y / x]χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbbid.1 | . . 3 ⊢ Ⅎxφ | |
2 | sbbid.2 | . . 3 ⊢ (φ → (ψ ↔ χ)) | |
3 | 1, 2 | alrimi 1765 | . 2 ⊢ (φ → ∀x(ψ ↔ χ)) |
4 | spsbbi 2077 | . 2 ⊢ (∀x(ψ ↔ χ) → ([y / x]ψ ↔ [y / x]χ)) | |
5 | 3, 4 | syl 15 | 1 ⊢ (φ → ([y / x]ψ ↔ [y / x]χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 Ⅎwnf 1544 [wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
This theorem is referenced by: sbcom 2089 sbcom2 2114 |
Copyright terms: Public domain | W3C validator |