New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbcom | Unicode version |
Description: A commutativity law for substitution. (Contributed by NM, 27-May-1997.) |
Ref | Expression |
---|---|
sbcom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drsb1 2022 | . . . . . 6 | |
2 | nfae 1954 | . . . . . . 7 | |
3 | drsb1 2022 | . . . . . . 7 | |
4 | 2, 3 | sbbid 2078 | . . . . . 6 |
5 | 1, 4 | bitr3d 246 | . . . . 5 |
6 | 5 | adantr 451 | . . . 4 |
7 | nfnae 1956 | . . . . . . . . 9 | |
8 | nfnae 1956 | . . . . . . . . 9 | |
9 | 7, 8 | nfan 1824 | . . . . . . . 8 |
10 | nfeqf 1958 | . . . . . . . . 9 | |
11 | 19.21t 1795 | . . . . . . . . 9 | |
12 | 10, 11 | syl 15 | . . . . . . . 8 |
13 | 9, 12 | albid 1772 | . . . . . . 7 |
14 | 13 | adantrr 697 | . . . . . 6 |
15 | alcom 1737 | . . . . . . . 8 | |
16 | nfnae 1956 | . . . . . . . . . 10 | |
17 | nfnae 1956 | . . . . . . . . . 10 | |
18 | 16, 17 | nfan 1824 | . . . . . . . . 9 |
19 | bi2.04 350 | . . . . . . . . . . 11 | |
20 | 19 | albii 1566 | . . . . . . . . . 10 |
21 | aecom 1946 | . . . . . . . . . . . . 13 | |
22 | 21 | con3i 127 | . . . . . . . . . . . 12 |
23 | nfeqf 1958 | . . . . . . . . . . . 12 | |
24 | 22, 23 | sylan 457 | . . . . . . . . . . 11 |
25 | 19.21t 1795 | . . . . . . . . . . 11 | |
26 | 24, 25 | syl 15 | . . . . . . . . . 10 |
27 | 20, 26 | syl5bb 248 | . . . . . . . . 9 |
28 | 18, 27 | albid 1772 | . . . . . . . 8 |
29 | 15, 28 | syl5bb 248 | . . . . . . 7 |
30 | 29 | adantrl 696 | . . . . . 6 |
31 | 14, 30 | bitr3d 246 | . . . . 5 |
32 | sb4b 2054 | . . . . . . 7 | |
33 | sb4b 2054 | . . . . . . . . 9 | |
34 | 33 | imbi2d 307 | . . . . . . . 8 |
35 | 8, 34 | albid 1772 | . . . . . . 7 |
36 | 32, 35 | sylan9bbr 681 | . . . . . 6 |
37 | 36 | adantl 452 | . . . . 5 |
38 | sb4b 2054 | . . . . . . 7 | |
39 | sb4b 2054 | . . . . . . . . 9 | |
40 | 39 | imbi2d 307 | . . . . . . . 8 |
41 | 17, 40 | albid 1772 | . . . . . . 7 |
42 | 38, 41 | sylan9bb 680 | . . . . . 6 |
43 | 42 | adantl 452 | . . . . 5 |
44 | 31, 37, 43 | 3bitr4d 276 | . . . 4 |
45 | 6, 44 | pm2.61ian 765 | . . 3 |
46 | 45 | ex 423 | . 2 |
47 | nfae 1954 | . . . 4 | |
48 | sbequ12 1919 | . . . . 5 | |
49 | 48 | sps 1754 | . . . 4 |
50 | 47, 49 | sbbid 2078 | . . 3 |
51 | sbequ12 1919 | . . . 4 | |
52 | 51 | sps 1754 | . . 3 |
53 | 50, 52 | bitr3d 246 | . 2 |
54 | sbequ12 1919 | . . . 4 | |
55 | 54 | sps 1754 | . . 3 |
56 | nfae 1954 | . . . 4 | |
57 | sbequ12 1919 | . . . . 5 | |
58 | 57 | sps 1754 | . . . 4 |
59 | 56, 58 | sbbid 2078 | . . 3 |
60 | 55, 59 | bitr3d 246 | . 2 |
61 | 46, 53, 60 | pm2.61ii 157 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wb 176 wa 358 wal 1540 wnf 1544 wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |