| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > sbcom | Unicode version | ||
| Description: A commutativity law for substitution. (Contributed by NM, 27-May-1997.) |
| Ref | Expression |
|---|---|
| sbcom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drsb1 2022 |
. . . . . 6
| |
| 2 | nfae 1954 |
. . . . . . 7
| |
| 3 | drsb1 2022 |
. . . . . . 7
| |
| 4 | 2, 3 | sbbid 2078 |
. . . . . 6
|
| 5 | 1, 4 | bitr3d 246 |
. . . . 5
|
| 6 | 5 | adantr 451 |
. . . 4
|
| 7 | nfnae 1956 |
. . . . . . . . 9
| |
| 8 | nfnae 1956 |
. . . . . . . . 9
| |
| 9 | 7, 8 | nfan 1824 |
. . . . . . . 8
|
| 10 | nfeqf 1958 |
. . . . . . . . 9
| |
| 11 | 19.21t 1795 |
. . . . . . . . 9
| |
| 12 | 10, 11 | syl 15 |
. . . . . . . 8
|
| 13 | 9, 12 | albid 1772 |
. . . . . . 7
|
| 14 | 13 | adantrr 697 |
. . . . . 6
|
| 15 | alcom 1737 |
. . . . . . . 8
| |
| 16 | nfnae 1956 |
. . . . . . . . . 10
| |
| 17 | nfnae 1956 |
. . . . . . . . . 10
| |
| 18 | 16, 17 | nfan 1824 |
. . . . . . . . 9
|
| 19 | bi2.04 350 |
. . . . . . . . . . 11
| |
| 20 | 19 | albii 1566 |
. . . . . . . . . 10
|
| 21 | aecom 1946 |
. . . . . . . . . . . . 13
| |
| 22 | 21 | con3i 127 |
. . . . . . . . . . . 12
|
| 23 | nfeqf 1958 |
. . . . . . . . . . . 12
| |
| 24 | 22, 23 | sylan 457 |
. . . . . . . . . . 11
|
| 25 | 19.21t 1795 |
. . . . . . . . . . 11
| |
| 26 | 24, 25 | syl 15 |
. . . . . . . . . 10
|
| 27 | 20, 26 | syl5bb 248 |
. . . . . . . . 9
|
| 28 | 18, 27 | albid 1772 |
. . . . . . . 8
|
| 29 | 15, 28 | syl5bb 248 |
. . . . . . 7
|
| 30 | 29 | adantrl 696 |
. . . . . 6
|
| 31 | 14, 30 | bitr3d 246 |
. . . . 5
|
| 32 | sb4b 2054 |
. . . . . . 7
| |
| 33 | sb4b 2054 |
. . . . . . . . 9
| |
| 34 | 33 | imbi2d 307 |
. . . . . . . 8
|
| 35 | 8, 34 | albid 1772 |
. . . . . . 7
|
| 36 | 32, 35 | sylan9bbr 681 |
. . . . . 6
|
| 37 | 36 | adantl 452 |
. . . . 5
|
| 38 | sb4b 2054 |
. . . . . . 7
| |
| 39 | sb4b 2054 |
. . . . . . . . 9
| |
| 40 | 39 | imbi2d 307 |
. . . . . . . 8
|
| 41 | 17, 40 | albid 1772 |
. . . . . . 7
|
| 42 | 38, 41 | sylan9bb 680 |
. . . . . 6
|
| 43 | 42 | adantl 452 |
. . . . 5
|
| 44 | 31, 37, 43 | 3bitr4d 276 |
. . . 4
|
| 45 | 6, 44 | pm2.61ian 765 |
. . 3
|
| 46 | 45 | ex 423 |
. 2
|
| 47 | nfae 1954 |
. . . 4
| |
| 48 | sbequ12 1919 |
. . . . 5
| |
| 49 | 48 | sps 1754 |
. . . 4
|
| 50 | 47, 49 | sbbid 2078 |
. . 3
|
| 51 | sbequ12 1919 |
. . . 4
| |
| 52 | 51 | sps 1754 |
. . 3
|
| 53 | 50, 52 | bitr3d 246 |
. 2
|
| 54 | sbequ12 1919 |
. . . 4
| |
| 55 | 54 | sps 1754 |
. . 3
|
| 56 | nfae 1954 |
. . . 4
| |
| 57 | sbequ12 1919 |
. . . . 5
| |
| 58 | 57 | sps 1754 |
. . . 4
|
| 59 | 56, 58 | sbbid 2078 |
. . 3
|
| 60 | 55, 59 | bitr3d 246 |
. 2
|
| 61 | 46, 53, 60 | pm2.61ii 157 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |