| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > sbcom2 | Unicode version | ||
| Description: Commutativity law for substitution. Used in proof of Theorem 9.7 of [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 27-May-1997.) | 
| Ref | Expression | 
|---|---|
| sbcom2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | alcom 1737 | 
. . . . . 6
 | |
| 2 | bi2.04 350 | 
. . . . . . . . 9
 | |
| 3 | 2 | albii 1566 | 
. . . . . . . 8
 | 
| 4 | 19.21v 1890 | 
. . . . . . . 8
 | |
| 5 | 3, 4 | bitri 240 | 
. . . . . . 7
 | 
| 6 | 5 | albii 1566 | 
. . . . . 6
 | 
| 7 | 19.21v 1890 | 
. . . . . . 7
 | |
| 8 | 7 | albii 1566 | 
. . . . . 6
 | 
| 9 | 1, 6, 8 | 3bitr3i 266 | 
. . . . 5
 | 
| 10 | 9 | a1i 10 | 
. . . 4
 | 
| 11 | sb4b 2054 | 
. . . . 5
 | |
| 12 | sb4b 2054 | 
. . . . . . 7
 | |
| 13 | 12 | imbi2d 307 | 
. . . . . 6
 | 
| 14 | 13 | albidv 1625 | 
. . . . 5
 | 
| 15 | 11, 14 | sylan9bbr 681 | 
. . . 4
 | 
| 16 | sb4b 2054 | 
. . . . 5
 | |
| 17 | sb4b 2054 | 
. . . . . . 7
 | |
| 18 | 17 | imbi2d 307 | 
. . . . . 6
 | 
| 19 | 18 | albidv 1625 | 
. . . . 5
 | 
| 20 | 16, 19 | sylan9bb 680 | 
. . . 4
 | 
| 21 | 10, 15, 20 | 3bitr4d 276 | 
. . 3
 | 
| 22 | 21 | ex 423 | 
. 2
 | 
| 23 | nfae 1954 | 
. . . 4
 | |
| 24 | sbequ12 1919 | 
. . . . 5
 | |
| 25 | 24 | sps 1754 | 
. . . 4
 | 
| 26 | 23, 25 | sbbid 2078 | 
. . 3
 | 
| 27 | sbequ12 1919 | 
. . . 4
 | |
| 28 | 27 | sps 1754 | 
. . 3
 | 
| 29 | 26, 28 | bitr3d 246 | 
. 2
 | 
| 30 | sbequ12 1919 | 
. . . 4
 | |
| 31 | 30 | sps 1754 | 
. . 3
 | 
| 32 | nfae 1954 | 
. . . 4
 | |
| 33 | sbequ12 1919 | 
. . . . 5
 | |
| 34 | 33 | sps 1754 | 
. . . 4
 | 
| 35 | 32, 34 | sbbid 2078 | 
. . 3
 | 
| 36 | 31, 35 | bitr3d 246 | 
. 2
 | 
| 37 | 22, 29, 36 | pm2.61ii 157 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 | 
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 | 
| This theorem is referenced by: 2sb5rf 2117 2sb6rf 2118 2eu6 2289 | 
| Copyright terms: Public domain | W3C validator |