NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sbc6g Unicode version

Theorem sbc6g 3072
Description: An equivalence for class substitution. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Assertion
Ref Expression
sbc6g  [.  ].
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem sbc6g
StepHypRef Expression
1 nfe1 1732 . . 3  F/
2 ceqex 2970 . . 3
31, 2ceqsalg 2884 . 2
4 sbc5 3071 . 2  [.  ].
53, 4syl6rbbr 255 1  [.  ].
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wa 358  wal 1540  wex 1541   wceq 1642   wcel 1710   [.wsbc 3047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-sbc 3048
This theorem is referenced by:  sbc6  3073  sbciegft  3077  ralsns  3764
  Copyright terms: Public domain W3C validator