New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > snsssn | Unicode version |
Description: If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006.) |
Ref | Expression |
---|---|
sneqr.1 |
Ref | Expression |
---|---|
snsssn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sssn 3865 | . 2 | |
2 | sneqr.1 | . . . . . 6 | |
3 | 2 | snnz 3835 | . . . . 5 |
4 | df-ne 2519 | . . . . 5 | |
5 | 3, 4 | mpbi 199 | . . . 4 |
6 | 5 | pm2.21i 123 | . . 3 |
7 | 2 | sneqr 3873 | . . 3 |
8 | 6, 7 | jaoi 368 | . 2 |
9 | 1, 8 | sylbi 187 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wo 357 wceq 1642 wcel 1710 wne 2517 cvv 2860 wss 3258 c0 3551 csn 3738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |