NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  snsssn GIF version

Theorem snsssn 3874
Description: If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006.)
Hypothesis
Ref Expression
sneqr.1 A V
Assertion
Ref Expression
snsssn ({A} {B} → A = B)

Proof of Theorem snsssn
StepHypRef Expression
1 sssn 3865 . 2 ({A} {B} ↔ ({A} = {A} = {B}))
2 sneqr.1 . . . . . 6 A V
32snnz 3835 . . . . 5 {A} ≠
4 df-ne 2519 . . . . 5 ({A} ≠ ↔ ¬ {A} = )
53, 4mpbi 199 . . . 4 ¬ {A} =
65pm2.21i 123 . . 3 ({A} = A = B)
72sneqr 3873 . . 3 ({A} = {B} → A = B)
86, 7jaoi 368 . 2 (({A} = {A} = {B}) → A = B)
91, 8sylbi 187 1 ({A} {B} → A = B)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wo 357   = wceq 1642   wcel 1710  wne 2517  Vcvv 2860   wss 3258  c0 3551  {csn 3738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator