| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > snsssn | GIF version | ||
| Description: If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006.) |
| Ref | Expression |
|---|---|
| sneqr.1 | ⊢ A ∈ V |
| Ref | Expression |
|---|---|
| snsssn | ⊢ ({A} ⊆ {B} → A = B) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sssn 3865 | . 2 ⊢ ({A} ⊆ {B} ↔ ({A} = ∅ ∨ {A} = {B})) | |
| 2 | sneqr.1 | . . . . . 6 ⊢ A ∈ V | |
| 3 | 2 | snnz 3835 | . . . . 5 ⊢ {A} ≠ ∅ |
| 4 | df-ne 2519 | . . . . 5 ⊢ ({A} ≠ ∅ ↔ ¬ {A} = ∅) | |
| 5 | 3, 4 | mpbi 199 | . . . 4 ⊢ ¬ {A} = ∅ |
| 6 | 5 | pm2.21i 123 | . . 3 ⊢ ({A} = ∅ → A = B) |
| 7 | 2 | sneqr 3873 | . . 3 ⊢ ({A} = {B} → A = B) |
| 8 | 6, 7 | jaoi 368 | . 2 ⊢ (({A} = ∅ ∨ {A} = {B}) → A = B) |
| 9 | 1, 8 | sylbi 187 | 1 ⊢ ({A} ⊆ {B} → A = B) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 357 = wceq 1642 ∈ wcel 1710 ≠ wne 2517 Vcvv 2860 ⊆ wss 3258 ∅c0 3551 {csn 3738 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |