New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > spimeh | Unicode version |
Description: Existential introduction, using implicit substitution. Compare Lemma 14 of [Tarski] p. 70. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Wolf Lammen, 10-Dec-2017.) |
Ref | Expression |
---|---|
spimeh.1 | |
spimeh.2 |
Ref | Expression |
---|---|
spimeh |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spimeh.1 | . 2 | |
2 | a9ev 1656 | . . . 4 | |
3 | spimeh.2 | . . . . 5 | |
4 | 3 | eximi 1576 | . . . 4 |
5 | 2, 4 | ax-mp 5 | . . 3 |
6 | 5 | 19.35i 1601 | . 2 |
7 | 1, 6 | syl 15 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wal 1540 wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-9 1654 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 |
This theorem is referenced by: ax12olem1 1927 ax10lem2 1937 |
Copyright terms: Public domain | W3C validator |