New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > spimeh | GIF version |
Description: Existential introduction, using implicit substitution. Compare Lemma 14 of [Tarski] p. 70. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Wolf Lammen, 10-Dec-2017.) |
Ref | Expression |
---|---|
spimeh.1 | ⊢ (φ → ∀xφ) |
spimeh.2 | ⊢ (x = z → (φ → ψ)) |
Ref | Expression |
---|---|
spimeh | ⊢ (φ → ∃xψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spimeh.1 | . 2 ⊢ (φ → ∀xφ) | |
2 | a9ev 1656 | . . . 4 ⊢ ∃x x = z | |
3 | spimeh.2 | . . . . 5 ⊢ (x = z → (φ → ψ)) | |
4 | 3 | eximi 1576 | . . . 4 ⊢ (∃x x = z → ∃x(φ → ψ)) |
5 | 2, 4 | ax-mp 5 | . . 3 ⊢ ∃x(φ → ψ) |
6 | 5 | 19.35i 1601 | . 2 ⊢ (∀xφ → ∃xψ) |
7 | 1, 6 | syl 15 | 1 ⊢ (φ → ∃xψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-9 1654 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 |
This theorem is referenced by: ax12olem1 1927 ax10lem2 1937 |
Copyright terms: Public domain | W3C validator |