New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > spimw | Unicode version |
Description: Specialization. Lemma 8 of [KalishMontague] p. 87. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 19-Apr-2017.) (Proof shortened by Wolf Lammen, 7-Aug-2017.) |
Ref | Expression |
---|---|
spimw.1 | |
spimw.2 |
Ref | Expression |
---|---|
spimw |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax9v 1655 | . 2 | |
2 | spimw.1 | . . 3 | |
3 | spimw.2 | . . 3 | |
4 | 2, 3 | spimfw 1646 | . 2 |
5 | 1, 4 | ax-mp 5 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-9 1654 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 |
This theorem is referenced by: spimvw 1669 spnfw 1670 cbvaliw 1673 spfw 1691 |
Copyright terms: Public domain | W3C validator |