New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ssdifin0 | Unicode version |
Description: A subset of a difference does not intersect the subtrahend. (Contributed by Jeff Hankins, 1-Sep-2013.) (Proof shortened by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
ssdifin0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrin 3481 | . 2 | |
2 | incom 3449 | . . 3 | |
3 | disjdif 3623 | . . 3 | |
4 | 2, 3 | eqtri 2373 | . 2 |
5 | sseq0 3583 | . 2 | |
6 | 1, 4, 5 | sylancl 643 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wceq 1642 cdif 3207 cin 3209 wss 3258 c0 3551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-ss 3260 df-nul 3552 |
This theorem is referenced by: ssdifeq0 3633 |
Copyright terms: Public domain | W3C validator |