| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > ssdifin0 | Unicode version | ||
| Description: A subset of a difference does not intersect the subtrahend. (Contributed by Jeff Hankins, 1-Sep-2013.) (Proof shortened by Mario Carneiro, 24-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| ssdifin0 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssrin 3481 | 
. 2
 | |
| 2 | incom 3449 | 
. . 3
 | |
| 3 | disjdif 3623 | 
. . 3
 | |
| 4 | 2, 3 | eqtri 2373 | 
. 2
 | 
| 5 | sseq0 3583 | 
. 2
 | |
| 6 | 1, 4, 5 | sylancl 643 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-ss 3260 df-nul 3552 | 
| This theorem is referenced by: ssdifeq0 3633 | 
| Copyright terms: Public domain | W3C validator |