NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  disjdif Unicode version

Theorem disjdif 3623
Description: A class and its relative complement are disjoint. Theorem 38 of [Suppes] p. 29. (Contributed by NM, 24-Mar-1998.)
Assertion
Ref Expression
disjdif

Proof of Theorem disjdif
StepHypRef Expression
1 inss1 3476 . 2
2 inssdif0 3618 . 2
31, 2mpbi 199 1
Colors of variables: wff setvar class
Syntax hints:   wceq 1642   cdif 3207   cin 3209   wss 3258  c0 3551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216  df-ss 3260  df-nul 3552
This theorem is referenced by:  undifv  3625  ssdifin0  3632  difdifdir  3638  sfinltfin  4536  phialllem2  4618  fvsnun1  5448  fvsnun2  5449  enadj  6061  sbthlem1  6204  dflec2  6211
  Copyright terms: Public domain W3C validator