New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > incom | Unicode version |
Description: Commutative law for intersection of classes. Exercise 7 of [TakeutiZaring] p. 17. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
incom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 437 | . . 3 | |
2 | elin 3220 | . . 3 | |
3 | elin 3220 | . . 3 | |
4 | 1, 2, 3 | 3bitr4i 268 | . 2 |
5 | 4 | eqriv 2350 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wa 358 wceq 1642 wcel 1710 cin 3209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 |
This theorem is referenced by: ineq2 3452 dfss1 3461 in12 3467 in32 3468 in13 3469 in31 3470 inss2 3477 sslin 3482 inss 3485 indif1 3500 indifcom 3501 indir 3504 symdif1 3520 dfrab2 3531 disjr 3593 ssdifin0 3632 difdifdir 3638 uneqdifeq 3639 diftpsn3 3850 iinrab2 4030 iunin1 4032 iinin1 4038 riinn0 4041 rintn0 4057 compldif 4070 xpkexg 4289 dfiota4 4373 dfaddc2 4382 addccom 4407 nndisjeq 4430 phialllem2 4618 dmres 4987 rescom 4990 resabs1 4993 resopab 5000 imadisj 5016 ndmima 5026 intirr 5030 resdmres 5079 funun 5147 fnresdisj 5194 fvun2 5381 ressnop0 5437 fvsnun1 5448 enadj 6061 nchoicelem7 6296 nchoicelem14 6303 |
Copyright terms: Public domain | W3C validator |