NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sylan9 Unicode version

Theorem sylan9 638
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.)
Hypotheses
Ref Expression
sylan9.1
sylan9.2
Assertion
Ref Expression
sylan9

Proof of Theorem sylan9
StepHypRef Expression
1 sylan9.1 . . 3
2 sylan9.2 . . 3
31, 2syl9 66 . 2
43imp 418 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  sbequi  2059  sbal1  2126  rspc2  2960  rspc3v  2964  copsexg  4607  chfnrn  5399  ffnfv  5427  f1elima  5474  isotr  5495
  Copyright terms: Public domain W3C validator