New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbequi | Unicode version |
Description: An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sbequi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbsb2 2057 | . . . . . 6 | |
2 | equvini 1987 | . . . . . . . 8 | |
3 | stdpc7 1917 | . . . . . . . . . 10 | |
4 | sbequ1 1918 | . . . . . . . . . 10 | |
5 | 3, 4 | sylan9 638 | . . . . . . . . 9 |
6 | 5 | eximi 1576 | . . . . . . . 8 |
7 | 2, 6 | syl 15 | . . . . . . 7 |
8 | 19.35 1600 | . . . . . . 7 | |
9 | 7, 8 | sylib 188 | . . . . . 6 |
10 | 1, 9 | sylan9 638 | . . . . 5 |
11 | nfsb2 2058 | . . . . . 6 | |
12 | 11 | 19.9d 1782 | . . . . 5 |
13 | 10, 12 | syl9 66 | . . . 4 |
14 | 13 | ex 423 | . . 3 |
15 | 14 | com23 72 | . 2 |
16 | sbequ2 1650 | . . . . . 6 | |
17 | 16 | sps 1754 | . . . . 5 |
18 | 17 | adantr 451 | . . . 4 |
19 | sbequ1 1918 | . . . . 5 | |
20 | drsb1 2022 | . . . . . 6 | |
21 | 20 | biimprd 214 | . . . . 5 |
22 | 19, 21 | sylan9r 639 | . . . 4 |
23 | 18, 22 | syld 40 | . . 3 |
24 | 23 | ex 423 | . 2 |
25 | drsb1 2022 | . . . . . 6 | |
26 | 25 | biimpd 198 | . . . . 5 |
27 | stdpc7 1917 | . . . . 5 | |
28 | 26, 27 | sylan9 638 | . . . 4 |
29 | 4 | sps 1754 | . . . . 5 |
30 | 29 | adantr 451 | . . . 4 |
31 | 28, 30 | syld 40 | . . 3 |
32 | 31 | ex 423 | . 2 |
33 | 15, 24, 32 | pm2.61ii 157 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wa 358 wal 1540 wex 1541 wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
This theorem is referenced by: sbequ 2060 |
Copyright terms: Public domain | W3C validator |