| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > sbequi | Unicode version | ||
| Description: An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sbequi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbsb2 2057 |
. . . . . 6
| |
| 2 | equvini 1987 |
. . . . . . . 8
| |
| 3 | stdpc7 1917 |
. . . . . . . . . 10
| |
| 4 | sbequ1 1918 |
. . . . . . . . . 10
| |
| 5 | 3, 4 | sylan9 638 |
. . . . . . . . 9
|
| 6 | 5 | eximi 1576 |
. . . . . . . 8
|
| 7 | 2, 6 | syl 15 |
. . . . . . 7
|
| 8 | 19.35 1600 |
. . . . . . 7
| |
| 9 | 7, 8 | sylib 188 |
. . . . . 6
|
| 10 | 1, 9 | sylan9 638 |
. . . . 5
|
| 11 | nfsb2 2058 |
. . . . . 6
| |
| 12 | 11 | 19.9d 1782 |
. . . . 5
|
| 13 | 10, 12 | syl9 66 |
. . . 4
|
| 14 | 13 | ex 423 |
. . 3
|
| 15 | 14 | com23 72 |
. 2
|
| 16 | sbequ2 1650 |
. . . . . 6
| |
| 17 | 16 | sps 1754 |
. . . . 5
|
| 18 | 17 | adantr 451 |
. . . 4
|
| 19 | sbequ1 1918 |
. . . . 5
| |
| 20 | drsb1 2022 |
. . . . . 6
| |
| 21 | 20 | biimprd 214 |
. . . . 5
|
| 22 | 19, 21 | sylan9r 639 |
. . . 4
|
| 23 | 18, 22 | syld 40 |
. . 3
|
| 24 | 23 | ex 423 |
. 2
|
| 25 | drsb1 2022 |
. . . . . 6
| |
| 26 | 25 | biimpd 198 |
. . . . 5
|
| 27 | stdpc7 1917 |
. . . . 5
| |
| 28 | 26, 27 | sylan9 638 |
. . . 4
|
| 29 | 4 | sps 1754 |
. . . . 5
|
| 30 | 29 | adantr 451 |
. . . 4
|
| 31 | 28, 30 | syld 40 |
. . 3
|
| 32 | 31 | ex 423 |
. 2
|
| 33 | 15, 24, 32 | pm2.61ii 157 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
| This theorem is referenced by: sbequ 2060 |
| Copyright terms: Public domain | W3C validator |