NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sbequi Unicode version

Theorem sbequi 2059
Description: An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sbequi

Proof of Theorem sbequi
StepHypRef Expression
1 hbsb2 2057 . . . . . 6
2 equvini 1987 . . . . . . . 8
3 stdpc7 1917 . . . . . . . . . 10
4 sbequ1 1918 . . . . . . . . . 10
53, 4sylan9 638 . . . . . . . . 9
65eximi 1576 . . . . . . . 8
72, 6syl 15 . . . . . . 7
8 19.35 1600 . . . . . . 7
97, 8sylib 188 . . . . . 6
101, 9sylan9 638 . . . . 5
11 nfsb2 2058 . . . . . 6  F/
121119.9d 1782 . . . . 5
1310, 12syl9 66 . . . 4
1413ex 423 . . 3
1514com23 72 . 2
16 sbequ2 1650 . . . . . 6
1716sps 1754 . . . . 5
1817adantr 451 . . . 4
19 sbequ1 1918 . . . . 5
20 drsb1 2022 . . . . . 6
2120biimprd 214 . . . . 5
2219, 21sylan9r 639 . . . 4
2318, 22syld 40 . . 3
2423ex 423 . 2
25 drsb1 2022 . . . . . 6
2625biimpd 198 . . . . 5
27 stdpc7 1917 . . . . 5
2826, 27sylan9 638 . . . 4
294sps 1754 . . . . 5
3029adantr 451 . . . 4
3128, 30syld 40 . . 3
3231ex 423 . 2
3315, 24, 32pm2.61ii 157 1
Colors of variables: wff setvar class
Syntax hints:   wn 3   wi 4   wa 358  wal 1540  wex 1541  wsb 1648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649
This theorem is referenced by:  sbequ  2060
  Copyright terms: Public domain W3C validator