New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > isotr | Unicode version |
Description: Composition (transitive) law for isomorphism. Proposition 6.30(3) of [TakeutiZaring] p. 33. (Contributed by set.mm contributors, 27-Apr-2004.) |
Ref | Expression |
---|---|
isotr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oco 5309 | . . . . 5 | |
2 | 1 | ad2ant2r 727 | . . . 4 |
3 | 2 | ancoms 439 | . . 3 |
4 | f1of 5288 | . . . . . . . . 9 | |
5 | ffvelrn 5416 | . . . . . . . . . . 11 | |
6 | 5 | ex 423 | . . . . . . . . . 10 |
7 | ffvelrn 5416 | . . . . . . . . . . 11 | |
8 | 7 | ex 423 | . . . . . . . . . 10 |
9 | 6, 8 | anim12d 546 | . . . . . . . . 9 |
10 | 4, 9 | syl 15 | . . . . . . . 8 |
11 | 10 | adantr 451 | . . . . . . 7 |
12 | breq1 4643 | . . . . . . . . . . 11 | |
13 | fveq2 5329 | . . . . . . . . . . . 12 | |
14 | 13 | breq1d 4650 | . . . . . . . . . . 11 |
15 | 12, 14 | bibi12d 312 | . . . . . . . . . 10 |
16 | breq2 4644 | . . . . . . . . . . 11 | |
17 | fveq2 5329 | . . . . . . . . . . . 12 | |
18 | 17 | breq2d 4652 | . . . . . . . . . . 11 |
19 | 16, 18 | bibi12d 312 | . . . . . . . . . 10 |
20 | 15, 19 | rspc2v 2962 | . . . . . . . . 9 |
21 | 20 | com12 27 | . . . . . . . 8 |
22 | 21 | adantl 452 | . . . . . . 7 |
23 | 11, 22 | sylan9 638 | . . . . . 6 |
24 | 23 | imp 418 | . . . . 5 |
25 | breq1 4643 | . . . . . . . . . 10 | |
26 | fveq2 5329 | . . . . . . . . . . 11 | |
27 | 26 | breq1d 4650 | . . . . . . . . . 10 |
28 | 25, 27 | bibi12d 312 | . . . . . . . . 9 |
29 | breq2 4644 | . . . . . . . . . 10 | |
30 | fveq2 5329 | . . . . . . . . . . 11 | |
31 | 30 | breq2d 4652 | . . . . . . . . . 10 |
32 | 29, 31 | bibi12d 312 | . . . . . . . . 9 |
33 | 28, 32 | rspc2v 2962 | . . . . . . . 8 |
34 | 33 | impcom 419 | . . . . . . 7 |
35 | 34 | adantll 694 | . . . . . 6 |
36 | 35 | adantlr 695 | . . . . 5 |
37 | 4 | ad2antrr 706 | . . . . . 6 |
38 | fvco3 5385 | . . . . . . . 8 | |
39 | fvco3 5385 | . . . . . . . 8 | |
40 | 38, 39 | breqan12d 4655 | . . . . . . 7 |
41 | 40 | anandis 803 | . . . . . 6 |
42 | 37, 41 | sylan 457 | . . . . 5 |
43 | 24, 36, 42 | 3bitr4d 276 | . . . 4 |
44 | 43 | ralrimivva 2707 | . . 3 |
45 | 3, 44 | jca 518 | . 2 |
46 | df-iso 4797 | . . 3 | |
47 | df-iso 4797 | . . 3 | |
48 | 46, 47 | anbi12i 678 | . 2 |
49 | df-iso 4797 | . 2 | |
50 | 45, 48, 49 | 3imtr4i 257 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 wceq 1642 wcel 1710 wral 2615 class class class wbr 4640 ccom 4722 wf 4778 wf1o 4781 cfv 4782 wiso 4783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-co 4727 df-ima 4728 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-fv 4796 df-iso 4797 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |