| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > symdifeq2 | Unicode version | ||
| Description: Equality law for intersection. (Contributed by SF, 11-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| symdifeq2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | difeq2 3248 | 
. . . 4
 | |
| 2 | 1 | compleqd 3246 | 
. . 3
 | 
| 3 | difeq1 3247 | 
. . . 4
 | |
| 4 | 3 | compleqd 3246 | 
. . 3
 | 
| 5 | 2, 4 | nineq12d 3243 | 
. 2
 | 
| 6 | df-symdif 3217 | 
. . 3
 | |
| 7 | df-un 3215 | 
. . 3
 | |
| 8 | 6, 7 | eqtri 2373 | 
. 2
 | 
| 9 | df-symdif 3217 | 
. . 3
 | |
| 10 | df-un 3215 | 
. . 3
 | |
| 11 | 9, 10 | eqtri 2373 | 
. 2
 | 
| 12 | 5, 8, 11 | 3eqtr4g 2410 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 | 
| This theorem is referenced by: symdifeq12 3251 symdifeq2i 3253 symdifeq2d 3256 | 
| Copyright terms: Public domain | W3C validator |