NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  tpid3g Unicode version

Theorem tpid3g 3832
Description: Closed theorem form of tpid3 3833. This proof was automatically generated from the virtual deduction proof tpid3gVD in set.mm using a translation program. (Contributed by Alan Sare, 24-Oct-2011.)
Assertion
Ref Expression
tpid3g

Proof of Theorem tpid3g
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 elisset 2870 . 2
2 3mix3 1126 . . . . . . 7
32a1i 10 . . . . . 6
4 abid 2341 . . . . . 6
53, 4syl6ibr 218 . . . . 5
6 dftp2 3773 . . . . . 6
76eleq2i 2417 . . . . 5
85, 7syl6ibr 218 . . . 4
9 eleq1 2413 . . . 4
108, 9mpbidi 207 . . 3
1110exlimdv 1636 . 2
121, 11mpd 14 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   w3o 933  wex 1541   wceq 1642   wcel 1710  cab 2339  ctp 3740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-un 3215  df-sn 3742  df-pr 3743  df-tp 3744
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator