New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > tpid3g | GIF version |
Description: Closed theorem form of tpid3 3833. This proof was automatically generated from the virtual deduction proof tpid3gVD in set.mm using a translation program. (Contributed by Alan Sare, 24-Oct-2011.) |
Ref | Expression |
---|---|
tpid3g | ⊢ (A ∈ B → A ∈ {C, D, A}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2870 | . 2 ⊢ (A ∈ B → ∃x x = A) | |
2 | 3mix3 1126 | . . . . . . 7 ⊢ (x = A → (x = C ∨ x = D ∨ x = A)) | |
3 | 2 | a1i 10 | . . . . . 6 ⊢ (A ∈ B → (x = A → (x = C ∨ x = D ∨ x = A))) |
4 | abid 2341 | . . . . . 6 ⊢ (x ∈ {x ∣ (x = C ∨ x = D ∨ x = A)} ↔ (x = C ∨ x = D ∨ x = A)) | |
5 | 3, 4 | syl6ibr 218 | . . . . 5 ⊢ (A ∈ B → (x = A → x ∈ {x ∣ (x = C ∨ x = D ∨ x = A)})) |
6 | dftp2 3773 | . . . . . 6 ⊢ {C, D, A} = {x ∣ (x = C ∨ x = D ∨ x = A)} | |
7 | 6 | eleq2i 2417 | . . . . 5 ⊢ (x ∈ {C, D, A} ↔ x ∈ {x ∣ (x = C ∨ x = D ∨ x = A)}) |
8 | 5, 7 | syl6ibr 218 | . . . 4 ⊢ (A ∈ B → (x = A → x ∈ {C, D, A})) |
9 | eleq1 2413 | . . . 4 ⊢ (x = A → (x ∈ {C, D, A} ↔ A ∈ {C, D, A})) | |
10 | 8, 9 | mpbidi 207 | . . 3 ⊢ (A ∈ B → (x = A → A ∈ {C, D, A})) |
11 | 10 | exlimdv 1636 | . 2 ⊢ (A ∈ B → (∃x x = A → A ∈ {C, D, A})) |
12 | 1, 11 | mpd 14 | 1 ⊢ (A ∈ B → A ∈ {C, D, A}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 933 ∃wex 1541 = wceq 1642 ∈ wcel 1710 {cab 2339 {ctp 3740 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 df-sn 3742 df-pr 3743 df-tp 3744 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |