| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > unissb | Unicode version | ||
| Description: Relationship involving membership, subset, and union. Exercise 5 of [Enderton] p. 26 and its converse. (Contributed by NM, 20-Sep-2003.) | 
| Ref | Expression | 
|---|---|
| unissb | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eluni 3895 | 
. . . . . 6
 | |
| 2 | 1 | imbi1i 315 | 
. . . . 5
 | 
| 3 | 19.23v 1891 | 
. . . . 5
 | |
| 4 | 2, 3 | bitr4i 243 | 
. . . 4
 | 
| 5 | 4 | albii 1566 | 
. . 3
 | 
| 6 | alcom 1737 | 
. . . 4
 | |
| 7 | 19.21v 1890 | 
. . . . . 6
 | |
| 8 | impexp 433 | 
. . . . . . . 8
 | |
| 9 | bi2.04 350 | 
. . . . . . . 8
 | |
| 10 | 8, 9 | bitri 240 | 
. . . . . . 7
 | 
| 11 | 10 | albii 1566 | 
. . . . . 6
 | 
| 12 | dfss2 3263 | 
. . . . . . 7
 | |
| 13 | 12 | imbi2i 303 | 
. . . . . 6
 | 
| 14 | 7, 11, 13 | 3bitr4i 268 | 
. . . . 5
 | 
| 15 | 14 | albii 1566 | 
. . . 4
 | 
| 16 | 6, 15 | bitri 240 | 
. . 3
 | 
| 17 | 5, 16 | bitri 240 | 
. 2
 | 
| 18 | dfss2 3263 | 
. 2
 | |
| 19 | df-ral 2620 | 
. 2
 | |
| 20 | 17, 18, 19 | 3bitr4i 268 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-uni 3893 | 
| This theorem is referenced by: uniss2 3923 ssunieq 3925 sspwuni 4052 pwssb 4053 | 
| Copyright terms: Public domain | W3C validator |