NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  uniss2 Unicode version

Theorem uniss2 3923
Description: A subclass condition on the members of two classes that implies a subclass relation on their unions. Proposition 8.6 of [TakeutiZaring] p. 59. See iunss2 4012 for a generalization to indexed unions. (Contributed by NM, 22-Mar-2004.)
Assertion
Ref Expression
uniss2
Distinct variable groups:   ,   ,,
Allowed substitution hint:   ()

Proof of Theorem uniss2
StepHypRef Expression
1 ssuni 3914 . . . . 5
21expcom 424 . . . 4
32rexlimiv 2733 . . 3
43ralimi 2690 . 2
5 unissb 3922 . 2
64, 5sylibr 203 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wcel 1710  wral 2615  wrex 2616   wss 3258  cuni 3892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-uni 3893
This theorem is referenced by:  unidif  3924
  Copyright terms: Public domain W3C validator