New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 19.33 | GIF version |
Description: Theorem 19.33 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
19.33 | ⊢ ((∀xφ ∨ ∀xψ) → ∀x(φ ∨ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 374 | . . 3 ⊢ (φ → (φ ∨ ψ)) | |
2 | 1 | alimi 1559 | . 2 ⊢ (∀xφ → ∀x(φ ∨ ψ)) |
3 | olc 373 | . . 3 ⊢ (ψ → (φ ∨ ψ)) | |
4 | 3 | alimi 1559 | . 2 ⊢ (∀xψ → ∀x(φ ∨ ψ)) |
5 | 2, 4 | jaoi 368 | 1 ⊢ ((∀xφ ∨ ∀xψ) → ∀x(φ ∨ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 357 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-or 359 |
This theorem is referenced by: 19.33b 1608 |
Copyright terms: Public domain | W3C validator |