NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  19.33 GIF version

Theorem 19.33 1607
Description: Theorem 19.33 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
19.33 ((xφ xψ) → x(φ ψ))

Proof of Theorem 19.33
StepHypRef Expression
1 orc 374 . . 3 (φ → (φ ψ))
21alimi 1559 . 2 (xφx(φ ψ))
3 olc 373 . . 3 (ψ → (φ ψ))
43alimi 1559 . 2 (xψx(φ ψ))
52, 4jaoi 368 1 ((xφ xψ) → x(φ ψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wo 357  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557
This theorem depends on definitions:  df-bi 177  df-or 359
This theorem is referenced by:  19.33b  1608
  Copyright terms: Public domain W3C validator