New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > alimi | GIF version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
alimi.1 | ⊢ (φ → ψ) |
Ref | Expression |
---|---|
alimi | ⊢ (∀xφ → ∀xψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1557 | . 2 ⊢ (∀x(φ → ψ) → (∀xφ → ∀xψ)) | |
2 | alimi.1 | . 2 ⊢ (φ → ψ) | |
3 | 1, 2 | mpg 1548 | 1 ⊢ (∀xφ → ∀xψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-gen 1546 ax-5 1557 |
This theorem is referenced by: 2alimi 1560 al2imi 1561 alrimih 1565 exbi 1581 19.26 1593 19.29 1596 19.25 1603 19.33 1607 equidOLD 1677 alcomiw 1704 hbn1fw 1705 hba1w 1707 hbalw 1709 ax11dgen 1722 hbal 1736 ax5o 1749 hba1OLD 1787 19.38 1794 nfimdOLD 1809 hbimdOLD 1816 dvelimhw 1849 cbv3hv 1850 cbv3hvOLD 1851 19.21tOLD 1863 dvelimv 1939 ax10 1944 equvini 1987 stdpc4 2024 ax16i 2046 sbco3 2088 sb9i 2094 sbal1 2126 hba1-o 2149 aecom-o 2151 ax11 2155 hbequid 2160 ax67 2165 ax67to6 2167 ax67to7 2168 ax467 2169 ax467to6 2171 ax467to7 2172 equidqe 2173 equid1ALT 2176 ax10from10o 2177 ax10-16 2190 ax11eq 2193 ax11el 2194 ax11indi 2196 mo 2226 eumo0 2228 mo2 2233 2mo 2282 axi5r 2326 bm1.1 2338 alral 2673 rgen2a 2681 ralimi2 2687 ceqsalt 2882 spcgft 2932 rspct 2949 elabgt 2983 reu6 3026 sbciegft 3077 csbexg 3147 csbnestgf 3185 rabss2 3350 undif4 3608 ralf0 3657 intmin4 3956 dfiin2g 4001 iotanul 4355 iota4 4358 peano2 4404 nnsucelr 4429 fv3 5342 clos1nrel 5887 |
Copyright terms: Public domain | W3C validator |