New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 19.43OLD | GIF version |
Description: Obsolete proof of 19.43 1605 as of 3-May-2016. Leave this in for the example on the mmrecent.html page. (Contributed by NM, 5-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
19.43OLD | ⊢ (∃x(φ ∨ ψ) ↔ (∃xφ ∨ ∃xψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioran 476 | . . . . 5 ⊢ (¬ (φ ∨ ψ) ↔ (¬ φ ∧ ¬ ψ)) | |
2 | 1 | albii 1566 | . . . 4 ⊢ (∀x ¬ (φ ∨ ψ) ↔ ∀x(¬ φ ∧ ¬ ψ)) |
3 | 19.26 1593 | . . . 4 ⊢ (∀x(¬ φ ∧ ¬ ψ) ↔ (∀x ¬ φ ∧ ∀x ¬ ψ)) | |
4 | alnex 1543 | . . . . 5 ⊢ (∀x ¬ φ ↔ ¬ ∃xφ) | |
5 | alnex 1543 | . . . . 5 ⊢ (∀x ¬ ψ ↔ ¬ ∃xψ) | |
6 | 4, 5 | anbi12i 678 | . . . 4 ⊢ ((∀x ¬ φ ∧ ∀x ¬ ψ) ↔ (¬ ∃xφ ∧ ¬ ∃xψ)) |
7 | 2, 3, 6 | 3bitri 262 | . . 3 ⊢ (∀x ¬ (φ ∨ ψ) ↔ (¬ ∃xφ ∧ ¬ ∃xψ)) |
8 | 7 | notbii 287 | . 2 ⊢ (¬ ∀x ¬ (φ ∨ ψ) ↔ ¬ (¬ ∃xφ ∧ ¬ ∃xψ)) |
9 | df-ex 1542 | . 2 ⊢ (∃x(φ ∨ ψ) ↔ ¬ ∀x ¬ (φ ∨ ψ)) | |
10 | oran 482 | . 2 ⊢ ((∃xφ ∨ ∃xψ) ↔ ¬ (¬ ∃xφ ∧ ¬ ∃xψ)) | |
11 | 8, 9, 10 | 3bitr4i 268 | 1 ⊢ (∃x(φ ∨ ψ) ↔ (∃xφ ∨ ∃xψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ∨ wo 357 ∧ wa 358 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-ex 1542 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |