NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  19.34 GIF version

Theorem 19.34 1663
Description: Theorem 19.34 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
19.34 ((xφ xψ) → x(φ ψ))

Proof of Theorem 19.34
StepHypRef Expression
1 19.2 1659 . . 3 (xφxφ)
21orim1i 503 . 2 ((xφ xψ) → (xφ xψ))
3 19.43 1605 . 2 (x(φ ψ) ↔ (xφ xψ))
42, 3sylibr 203 1 ((xφ xψ) → x(φ ψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wo 357  wal 1540  wex 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-9 1654
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-ex 1542
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator