New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 19.34 | GIF version |
Description: Theorem 19.34 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
19.34 | ⊢ ((∀xφ ∨ ∃xψ) → ∃x(φ ∨ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.2 1659 | . . 3 ⊢ (∀xφ → ∃xφ) | |
2 | 1 | orim1i 503 | . 2 ⊢ ((∀xφ ∨ ∃xψ) → (∃xφ ∨ ∃xψ)) |
3 | 19.43 1605 | . 2 ⊢ (∃x(φ ∨ ψ) ↔ (∃xφ ∨ ∃xψ)) | |
4 | 2, 3 | sylibr 203 | 1 ⊢ ((∀xφ ∨ ∃xψ) → ∃x(φ ∨ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 357 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-9 1654 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-ex 1542 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |