New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > df-ex | GIF version |
Description: Define existential quantification. ∃xφ means "there exists at least one set x such that φ is true." Definition of [Margaris] p. 49. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
df-ex | ⊢ (∃xφ ↔ ¬ ∀x ¬ φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff φ | |
2 | vx | . . 3 setvar x | |
3 | 1, 2 | wex 1541 | . 2 wff ∃xφ |
4 | 1 | wn 3 | . . . 4 wff ¬ φ |
5 | 4, 2 | wal 1540 | . . 3 wff ∀x ¬ φ |
6 | 5 | wn 3 | . 2 wff ¬ ∀x ¬ φ |
7 | 3, 6 | wb 176 | 1 wff (∃xφ ↔ ¬ ∀x ¬ φ) |
Colors of variables: wff setvar class |
This definition is referenced by: alnex 1543 2nalexn 1573 19.43OLD 1606 ax17e 1618 speimfw 1645 spimfw 1646 a9ev 1656 19.8wOLD 1693 19.9vOLD 1697 cbvexvw 1703 hbe1w 1708 hbe1 1731 excom 1741 a6e 1751 19.8a 1756 19.9ht 1778 spimehOLD 1821 hbex 1841 nfexOLD 1844 nfexd 1854 19.9tOLD 1857 equs5e 1888 ax12olem5 1931 ax10 1944 a9e 1951 drex1 1967 nfexd2 1973 spime 1976 cbvex 1985 cbvexd 2009 spsbe 2075 sb8e 2093 sbex 2128 eujustALT 2207 spcimegf 2934 spcegf 2936 spcimedv 2939 n0f 3559 eq0 3565 ab0 3570 |
Copyright terms: Public domain | W3C validator |